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Abstract. A multi objective approach for constant-orientation singularity-free
path planning for the 6-6 semi-regular Stewart platform manipulator (SRSPM)
is presented in this paper. The concept of the singularity-free tube (SFT), which
is described as a one-parametric family of singularity-free spheres, is utilised
to ensure that the obtained paths are free of any gain-type singularities. Non-
Dominated Sorting Genetic Algorithm (NSGA-I1T) is used to obtain a set of opti-
mal paths connecting two given points while minimising its length and maximis-
ing its distance from the boundary of the SFT.
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1 Introduction

Parallel manipulators have smaller workspaces when compared to their serial coun-
terparts. The existence of gain—typef] singularities inside the workspace restricts the
workspace further. Thus, singularity-free path planning for parallel manipulators, specif-
ically, ones with 6-degree-of-freedom (DoF), is challenging. Random exploration and
probabilistic road maps (PRM) are two of many established methods employed for path
planning of a 6-DoF parallel manipulator, namely, the Stewart platform manipulator
(SPM). For example, in [2], the PRM method is utilised to identify safe via-points for
the singularity-free path and to discretise and analyse the SPM’s workspace using flood-
filling algorithms. Likewise, in [3]], a local routing methodology based on line geometry
finds a singularity-free path once the workspace is discretised using slicing techniques.
The present paper focuses on the constant orientation singularity-free path planning of
an SRSPM (shown in Fig. . In [4], the concept of an SFT was introduced, which is
described by a one-parametric family of spheres containing a source and a destination

3 When the end-effector of a manipulator, which in the case of parallel manipulators is usually
the moving platform, acquires one or more degree-of-freedom and can move instantly or even
finitely while the inputs are held fixed, it is referred to as a gain-type singularity (see, e.g., [1])
singularities. Since these occur when two or more branches of forward kinematics merge, these
are also known as the forward-kinematic singularities.
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point and is free of gain-type singularities for a constant orientation of the SRSPM. The
description of the SFT in the closed-form enables the use of numerical techniques to
impose additional constraints and specify various objectives related to singularity-free
path planning. The SFT thus presents an infinitude of singularity-free paths between the
given pair of points. In the current paper, leveraging the analytical nature of the SFT,
a multi objective optimisation problem has been formulated to obtain singularity-free
paths between two given points.

The rest of the paper is organised as follows: Section [2] describes the geometry of the
SRSPM. Section [3] presents the steps followed in formulating and solving the optimi-
sation problem. A numerical example and the main results are presented in Section [4]
A discussion of the results obtained and conclusions are presented in Sections [5]and [6]
respectively.

2  Geometry of the SRSPM

The SRSPM, a type of 6-SPS (spherical-prismatic-spherical) spatial parallel manipu-
lator, is depicted in Fig. [I] The manipulator has six linear actuators, denoted by [,
1t =1,---,6. They are coupled to the fixed platform (FP) and the moving platform (MP)
via spherical joints. The symbols r, and r; represent the circumradii of the MP and FP,
respectively. The spherical joints are centred at the vertices of both the platforms. The
following represents the angular displacements of the spherical joints on the FP as mea-
sured w.r.t. the positive X -axis in a counter clock wise (CCW) manner:

Y= [7f17 Y2, V35 V45 V5 ’ny]Ta
= (0,275, 27/3, 2v¢ + 27/3, 47 /3, 2y + 47 /3] . (1)
Accordingly, the coordinates of the vertices of the FP, denoted by b;,: = 1,--- , 6,
in the fixed frame O-XY Z, are:
b; = Rz (7;)[rr,0,0] ", )

where Rz (¢) is the rotation matrix describing a rotation about the positive Z-axis,
through an angle ¢, in a CCW manner. Similarly, the angular displacements of the
spherical joints, mounted on the MP, measured CCW from the positive x-axis of the
moving frame o-xyz, are:

Yin = [Im1 Ym2, Ym3s Ymas Yms: Yme]

= [0, 2vm, 277/3, 2Vm + 27/3, 47 /3, 2ym + 47 /3] 7. 3)

i

The vertices of the MP in o-zyz, denoted by £;, as shown in Fig. @], are located at:
ti = Rz (V) [rm: 0,0] . “)
The vertices t;, when transformed to the frame O-XY Z, are denoted by a;, where:

a; =p-+ Rti. (5)
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Fig. 1: Kinematic description of the SRSPM.

Table 1: Architecture parameters of an SRSPM

Parameter Symbol| Value|Unit

Minimum leg length Imin  10.4035|Metre
Maximum leg length Imax |1.4635|Metre
Circumradii of the moving platform rm |0.6153|Metre
Circumradii of the fixed platform e 10.9914Metre

Half the angular spacing between the
adjacent pairs of legs on the moving platform
Half the angular spacing between the
adjacent pairs of legs on the fixed platform

Ym |0.8656|Radian

v |0.1256|Radian

The orientation and position of the MP with respect to O- XY Z are represented by the
matrix R € SO(3) and the geometric centre of the MP, p = [r,y, 2], respectively.
The matrix R is expressed in terms of Rodrigues parameters, ¢ = [c1,ca,c3)" € R3.
The architecture parameters, required to define the SRSPM, are given in Table ]

3 Mathematical Formulation

The objective of the present work is to obtain singularity-free paths between the source
and the destination points, denoted by p, =[5, ¥s, 2] | and py =[74, ya, 2a] ", respec-
tively, using multi objective optimisation.

The singularity surface, denoted by S, for a constant orientation of the SRSPM has been
derived analytically in the closed-from in [1]. The equation defining the singularity sur-
face is reproduced below:

S =S(x,y,2) = 613222’ + 62x2 + es3TYz + eqxy + essz + ez + erx + egy2z+
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ey’ + e10y2” + e11yz + ey + e132° + e142° + e152 + e16 = 0. (©6)

The coefficients e, i = 1,---,16, appearing in Eq. @, are closed-form functions of
the Rodrigues parameters c1, c2, c3 and the architecture parameters ¢, 7'm, Yf, Ym. FOl-
lowing [4]], the projections of p, and p,; onto S are denoted by the points, g, and g,
respectively. The geodesic curve on S connecting the points g and g, is denoted by G.
As explained in[4], the knowledge of G is utilised to computed the SFT (denoted by 7),
in the form of a one parameter family of spheres:

T = (:1]‘ - pc(t)) : (.’1} 7pc(t)) - ’I"E(t) = O,Where,m = [‘Tayvz}—r7t € (07 1) (7)

The centre curve is given by p. (t) = [zc(t), ye(t), z.(t)] T, while the radii of the spheres
are given by the polynomial r.(t) (see [4] for the details). A parametric polynomial
path p,(t) = [x(t), y(t), z(t)] " is sought in this work, where the evolution of individual
coordinates is described by distinct quintic polynomials in the path parameter ¢ € [0, 1].
The coefficients of the polynomial forming the path are estimated by formulating a con-
strained optimisation problem. The path is subject to the terminal constraints, namely,
P,(0) = ps and p,(1) = py. These result in the following:

o(t) = ugot® + unrt! + wrot® + uist® + (za — w10 — w11 — ur2 — U1z — Ts)t + s,
y(t) = uaot® + ugrt" + uat® + ust® + (ya — uz0 — a1 — gz — uzz — Yt + s,
2(t) = uzot® + uzit? + ugat® 4+ usst® + (2q — uso — uz1 — Uy — usz — 2t + 2.
The unknown coefficients are organised in the following vector:

0, = [u10,U11, U2, U3, Usp, Un1, U2, U3, U0, U1, U2, Us3) | - (8)

Using the knowledge of the SFT presented in [4] a dual-objective constrained optimi-
sation problem is formulated as follows:

min(i;?ise z;pr(j/m) —p.(j/m)|?, ©)
i=
1 2 2 2
min(i;rpnise/o (Stx(t)) —l—(jty(t)) +<3:(t)> dr, (10)
subject 1o, |, (j/n) — pli/m) > — 12Gi/m) < 0, ¥j € L+ n—1],  (11)

where, both p,,(t) and p, (t) are sampled at mm and n points to compute the first objective
and constraint function, respectively. The two objectives, namely: (a) minimising the
overall deviation of the path from the centre curve of the SFT, and (b) minimising the
length of the path, are formulated in terms of Egs. (9[I0), respectively. Since the second
objective is a continuous function of ¢, it may be computed analytically. The constraint,
shown in Eq. (1), ensures that the path lies inside the SFT V ¢ € [0, 1].

4 Illustrative example and results

For the given example, the orientation of the MP is given in terms of Rodrigues parame-
ters, ¢ = [—0.9448,0.0703, —0.4608] T, and the architecture parameters of the SRSPM
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Fig. 2: Pareto front showing the solutions of the dual-objective optimisation problem.

are given in Table[T] The corresponding singularity surface S is computed using Eq. (6)
and is shown in Fig. [3] The source point and the destination point are chosen to be, p,
= [-0.2000, —0.5000,0.5000] ", and p; = [—0.0400, —0.2200, —0.3900] ", respec-
tively. These choices are arbitrary, except for two conditions: (a) both points are inside
the position workspace of the manipulator corresponding to the orientation of the MP,
and (b) the line segment connecting these points intersect S; i.e., the trivial solution
does not exist for the path-planning problem. Furthermore, the destination point is cho-
sen to be fairly close to S, so as to raise the level of difficulties in process of planning
singularity-free paths. The first objective and the constraint are sampled at m = 299
and n = 12 points, respectively.

Corresponding to the numerical values mentioned above, the expressions of z(t),
Yo (t), 2zc(t), and 7 (t) are obtained as:

Te(t) = —1.3494t3 + 1.4785t% — 0.0420t — 0.0483,
(t) = —1.2513t3 + 1.2622t + 0.0548t — 0.2648,
(t)
(t)

Ye
Zc

t) = —2.8460t> + 2.8900t> — 1.4962t + 0.8159,
re(t) = 20.6965t° — 40.2338¢* + 22.7970¢3 — 2.6085¢> — 1.1082¢ + 0.7517.

Multiple solutions for 8, corresponding to various singularity-free paths connecting p
and py, are obtained using NSGA-IT [5]. The values for NSGA—TII parameters are cho-
sen based on prior experience and are presented in Table[2| A Pareto fronﬂ showing the
values of the two objective functions corresponding to the obtained solutions for 6,(t)
is obtained and is shown in Fig.[2]

All the computations have been performed on a desktop computer, using one core of
a Ryzen 9 7950X CPU running at 4.5 GHz. The total time taken to obtain all the so-

* Pareto front is a set of non-dominated solutions, being chosen as optimal, if no objective can
be improved without sacrificing at least one of the other objectives.



6 Sandipan Bandyopadhyay

Fig. 3: Samples of singularity-free paths connecting p, and p,.

lutions on the pareto front was found to be 1.658 s. From the solutions obtained, five
singularity-free paths are plotted and shown in Fig.|3| The paths p,(¢) and p,,(¢) (corre-
sponding to the points L and H in Fig.[3) represent the spread of the solutions, since the
others fall within these two, as expected. Figure [d] shows the residual values of Eq. ()
along the paths depicted in Fig. 3] Even though it may appear visually that the residue
falls to zero (which would mean an intersection with the singularity surface) along all
the paths, it is an expected consequence of the choice of the destination point close to
the said surface. A look at TableEl however, confirms that the residues do not actually
vanish along any of the paths, and hence, the computed paths are indeed free of any
singularity.

5 Discussions

The concept of a singularity-free tube was recently introduced in[4]]. In this paper, the
same has been utilised to explore the variations in singularity-free paths that can be
obtained inside the SFT. Two objectives have been used in this work, which try to
keep the resulting path as far as possible from the singularity surface (as approximated
by the wall of the SFT) and minimise its length, respectively. All the non-dominated
solutions are obtained via solution of a multi-objective optimisation problem. An en-
tire set of singularity-free paths are obtained in less than two seconds, due to the
analytical formulation of the objectives and constraint. While a polynomial model is
adopted to describe the paths in this work, it is possible to any other smooth repre-
sentations, such as cubic splines or NURBS. In the future, further constraints may be
added to the path-planner, ensuring that the resulting path is within the workspace,
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Fig. 4: A plot between the residual values of Eq. @ and the values of the path parame-
ter ¢ for the paths shown in the Fig. E}

free of link interference, and issues related to limit of motions at the passive joints.

Table 2: Chosen values of the NSGA-II Table 3: Minimum residual values

parameters of Eq. @ for all the paths
Parameter Value Path [Minimum residue (x10~?)
Number of generations 200 i (t) 2.1790
Population size 500 () 3.7665
Probability of crossover 0.9 pi(t) 2.7339
Probability of mutation 0.167 p,(t) 2.3557
Distribution index for crossover| 100 p,(t) 2.4516
Distribution index for mutation 20

6 Conclusions

The utility of the SFT in obtaining constant orientation singularity-free paths is demon-
strated by solving a multi objective constraint optimisation problem. The stated opti-
misation problem is solved using NSGA-II and the obtained solutions are presented.
The multi-objective path planning method is observed to be accurate as well compu-
tationally efficient. This work serves as a step in the direction of non-singular optimal
path-planning for the SRSPM which may potentially be extended to other parallel ma-
nipulators.
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